B1 Project: Optimisation

John Lee

Introduction

This is the report for B1 Engineering Computation - Project B: Optimisation for regression and
classification models. The project investigates how to apply different optimisation methods for
learning optimal parameters of a model that can predict a value of interest for a given input data
point. A total of 6 tasks were given and completed using the MATLAB programming language with
the " Statistics and Machine Learning Toolbox version 23.2 and the "Optimization Toolbox version

23.2, . Results shown in this report are generated using rng(12345) unless otherwise stated.

Content

1. Task 1: Linear Regression via analytical solution to MSE ... 1
2. Task 2: Linear Regression via Gradient DeSCent .............uuuuuiiiiiiiiiiiiiieie e, 2
3. Task 3: Logistic Regression using Gradient Descent ..o 3
4. Task 4: Logistic Regression with Stochastic Gradient Descent .................cccccoiiiii, 5
5. Task 5: Optimizing SVM via Linear Programming ..............cccooeiiiiiiiieeeeeeeeeeeeeeeveeeveeee e 7
6. Task 6: Optimizing SVM via Gradient Descent and Hinge LOSS .........ovvveieiiiiiiiiieiiiiciieee e, 8



1. Task 1: Linear Regression via analytical solution to MSE

1.1. Optimal Parameters

With 1000 training samples, the resulting w and b are sensible given that they roughly equal to the

coefficients of the equation within the data generating function: y = 1.5 + 0.6z™ + 0.352®

Table 1: Training with 1000 samples
b Wl p®
Learnt 1.4862 0.6083 0.3435
Actual 1.5 0.6 0.35

Table 2: MSE for 1000 training samples

Training Test
MSE 0.0478 0.0495

1.2. Changing to Training Sample Size

This set of parameters differs from the one obtained in 1.1. With too small a training sample size,

there is insufficient data to accurately capture the coefficients for the linear regression.

Table 3: Training with 10 samples
b wD w®

Learnt 1.1395 0.6049 0.5678

Actual 1.5 0.6 0.35

Table 4: MSE for 10 training samples

Training Test
MSE 0.0548 0.0927

1.3. Experimentation with Training Sample Sizes and RNG Seeds

Prior to this, everything was done with rng(12345) . Now, we will vary seed values and training

sample sizes to observe how the number of training samples affects Training MSE and Test MSE .

Table 5: Experimentation MSE Means and Standard Deviations

Training Samples

Training MSE

Test MSE

4
10
20

100
1000
10000

0.0083 4- 0.0093
0.0355 £ 0.0188
0.0414 + 0.0147
0.0493 £ 0.0078
0.0504 + 0.0028
0.0499 £ 0.0007

0.2205 4 0.2989
0.0808 £ 0.0571
0.0586 4 0.0068
0.0518 £ 0.0012
0.0503 4 0.0004
0.0501 £ 0.0003

As the training sample size increases, both Training MSE and Test MSE converge to the variance for
regression target as mentioned in the data generating function r noise var = 0.05 . To understand
this, we firstly introduce the ¢ term as random error independent of X with mean of zero E[¢] =0

such that y can be expressed as
y=f(X)+e

Now we can re-express the MSE in terms of an expectation and a variance



A

B[(f(X) +e— f(X))’]

MSE = E [(y — 5’)2]

B[£(X)? + 26 £(X) — 2f(X) f(X) + &2 — 2f(X)e + f(X)?]
+ 2E[JBH (X[ + E[e?] — 2E[lBHAX)]

| + Bl = B[(1(X) - f(X))"] + (Ble?] — BLP?)

f(X) - f(X))

2

(£ — £(X))"] + Var(e)

Given this re-expression, we observe that as the error between prediction and target goes to zero,
there remains an irreducible error source in the form of the regression target’s variance, explaining

the convergence to 0.05 in agreement with r_noise var = 0.05 .
2. Task 2: Linear Regression via Gradient Descent

2.1. Optimal Learning Rate 1

To find the optimal learning rate A\, we keep n_iters = 1000 and perform the experiment
for lambdas = [0.00001 0.0001 0.001 0.01 0.1 1], picking the one with lowest corresponding
Training MSE and Validation MSE —> lambda = 0.1.

Table 6: Training and Validation MSEs for Different Learning Rates at 1000 iterations

A Training MSE Validation MSE
0.00001 6.5561 6.8993
0.0001 1.2430 1.2485

0.001 0.1428 0.1279

0.01 0.0472 0.0532

| 0.1 0.0465 0.0528
1 NaN NaN

2.2. Test Set

With the optimal parameters derived via lambda = 0.1, we calculate the Test MSE . There is a slight
difference between the two MSE values, and this is simply a result of rng(12345) “shuffling” the
numbers. The MSE values obtained so far have been done with test set being created after the train-

val set. The results will be different if the ordering was swapped.

Table 7: 200 validation and 20000 test samples Table 8: Reversed order of data generation
Validation Test Validation Test
MSE 0.0528 0.0496 MSE 0.0486 0.0497

2.3. Optimal Learning Rate 2

Changing from iters total = 1000 — iters total = 10000, we get lambda = 0.01.

2



Table 9: Training and Validation MSEs for Different Learning Rates at 10000 iterations

A Training MSE Validation MSE
0.00001 1.2439 1.2495
0.0001 0.1428 0.1279
0.001 0.0473 0.0532
0.01 0.0465 0.0528
0.1 0.0465 0.0528
1 NaN NaN

2.4. Relationship between n;...c and A

Based on the experiments in 2.1. and 2.3., we can see that as ny., decreases, the minimum
optimal learning rate, ), increases. This is reasonable since a suitable larger A would lead to faster
convergence, thereby reducing the n;.., necessary. Between the two, it is n.. that affects runtime,
because it dictates the number of loops for the learning function while X is only involved in one
multiplication step within each loop. Therefore, in practice, it is preferable to use a short n;..; coupled

with the optimal X so that runtime is shortened.

2.5. Comparison with Task 1

Running the analytical solution from Task 1 on the Task 2 training data produces the same optimal

parameters, which is reasonable since Gradient Descent should converge to the exact solution.

Table 10: Comparison of optimal parameters between Task 1 and Task 2
b w® w?
Task 1 1.4899 0.6089 0.3382
Task 2 1.4899 0.6089 0.3382

3. Task 3: Logistic Regression using Gradient Descent

3.1. Derivation of Log-Loss Gradient

Vole = Ve{—ylog(a(x78)) — (1 —y)log(1 — o(x70))}

ST A SR

B Va{ylog(l +exp(—%70)) — (1—y) log( e ) }

1+ exp(—%T0)

= Vo{ylog(1 + exp(—%T0)) + (1 — y) log(1 + exp(—%T0)) — (1 — y) log(exp(—%T9))}




= Vo{log(1 + exp(—%78)) — (1 — y) log(exp(—%T0))}
= Vo{log(1 + exp(—%70)) + (1 — y)x70}

exp(—%T0)

= _1+exp(—$cT9)5\( + (1 - y)f{

[ —1—exp(—%70) 1 . R

- ( 1+ exp(—%T 6) + 1+exp(fﬁT9))X +(1—y)x
=(-1+yx+(1-—yx=F—-yx n

3.2. Optimal Learning Rate 1

To find the optimal learning rate A, we keep n_iters = 1000 and perform the experiment
for lambdas = [0.00001 0.0001 0.001 ©.01 0.1 1], picking the one with lowest corresponding

Training Error and Validation Error = lambda = 1.

Table 11: Training and Validation e for Different Learning Rates at 1000 iterations

A Training e Validation e
0.00001 0.5000 0.4450
0.0001 0.4988 0.4450

0.001 0.4537 0.4400
0.01 0.0963 0.1050
0.1 0.0275 0.0350

B 0.0200 0.0300

3.3. Optimal Learning Rate 2
With

convergence of mean log-loss.

n_iters = 1000 and 1lambda = 1, the loss plateaus at the end of training, suggesting

0.7

Mean Log-I
T T T

inst Number of Iterations
T T T T

0.6 -

05

o
~

Mean Log-loss

02

0.1

0

o
w
T

0

Figure 1: Mean Log-loss for lambda =

I
100

I
200

I I I I I
400 500 600 700 800
Number of Iterations

L
300

I
900

1000

1 against number of iterations



3.4. Test Set

Table 12: Validation and Test e with Optimal Parameters

Validation Test
e 0.0300 0.0242

3.5. Performance

Using seeds from rng(1) to rng(20) , we collect 20 classification error ratios for each dataset, over

which we obtain their means and standard deviations.

Table 13: Experimentation e Means and Standard Deviations

Training Samples  Training Error Validation Error Test Error
10 0.0000 £ 0.0000 0.0500 + 0.1500 0.0600 4 0.0248
20 0.0000 + 0.0000 0.0250 + 0.0750 0.0399 + 0.0119
100 0.0150 £ 0.0135 0.0250 £ 0.0296 0.0285 4 0.0052
1000 0.0247 + 0.0039 0.0255 4+ 0.0086 0.0253 + 0.0013
10000 0.0249 £ 0.0016 0.0254 £ 0.0032 0.0251 4 0.0014

Over-fitting is when the error ratio for one dataset is much lower than that for the other 2. This is
observed in the first 2 rows, where Training Error deviates greatly from both Vvalidation Error
and Test Error . In fact, the Training Error reaches 0, implying perfect inference by the trained
model. This over-fitting may be due to the training sample size being too small (10 and 20 samples).
Another observation from the table is that validation Error and Test Error are very similar. This
suggests that the model’s performance on the validation samples gives us a good indication of that

for the test samples.
4. Task 4: Logistic Regression with Stochastic Gradient Descent

4.1. Configuring Hyperparameters

Using seeds from rng(1) to rng(20) , we collect 20 classification error ratios for each dataset, over
which we obtain their means and standard deviations. From there, we pick the batch size that yields

the lowest corresponding Training Error and Validation Error => batch size = 100

Table 14: Training and Validation e Means and Standard Deviations

Batch Size Training Error Validation Error
1 0.0276 + 0.0058 0.0410 4+ 0.0041

10 0.0218 + 0.0025 0.0370 + 0.0029

20 0.0210 + 0.0017 0.0355 + 0.0035

50 0.0209 + 0.0015 0.0345 + 0.0035
100 0.0207 + 0.0009 0.0328 + 0.0029




4.2. Convergence

With n_iters = 1000, lambda = 1, and batch size = 100, the loss plateaus at the end of training,

suggesting convergence of mean log-loss.

Mean Log-I i Number of Iterations
T T T T

0.7

0.6 ’»

0.5

Mean Log-loss
I
=
—

o
w
T

Lo\
02 \

0.1

0

I I 1 I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Number of lterations

Figure 2: Mean Log-loss for batch size = 100 and lambda = 1 against number of iterations

4.3. Comparison with Task 3.
By zooming into Figure 2, we can see that the plot is not smooth. This “noise” exists because the
actual training sample size is smaller than the full training dataset, which leads to greater variance

in mean log-loss when checked against the full training dataset.

4.4, Test Set

The resulting classification error ratios are very similar to those in 3.4., with test error ratio

outperforming validation error ratio by a similar margin given the same order of data generation.

Table 15: Validation and Test Accuracy with Optimal Learning Rate and Batch Size

Validation Test
e 0.0328 + 0.0029 0.0251 + 0.0011

4.5. Runtime and Memory Usage Differences

The number of steps within each of the ny., loops directly affect model training runtime. Unlike in GD,
SGD only considers a subset of the full training dataset. As such, the number of calculations in each
loop is smaller, resulting in shorter runtime. However, to continually get batches of random elements
within the full training dataset, the algorithm requires extra memory as large as the batch size . The
larger the batch size, the slower the training and the larger the extra memory needed. For large
databases in real-world applications, applying an SGD makes sense because it has the potential of
greatly shortening model training runtime. To realise this potential, however, there must be sufficient
RAM to store the batches.



5. Task 5: Optimizing SVM via Linear Programming

5.1. Linear Programming implementation
To be compatible with MATLAB’s Llinprog solver, § and £ can be combined into ¢ where
Y=1[6 & & - &y £ b w® w2]!
and since fTy =" ¢
f=[111.11000"

Another necessary part is to form A, 8, A., Beq, Ib, ub such that they map to the original conditions
of the optimisation equation. These then can be used in linprog(f, A, b, Aeq, beq, lb, ub) .Four
of these are trivial to setup due to the lack of an equality condition as well as there only being a lower

bound for £&. Parameters A and 8 can be derived by first manipulating the original condition into

—( f‘zre)yi —§ <1

7 —

function theta opt = train SVM linear progr(X, y)

f = [ones(length(y), 1); 0; 0; 0]; % [111... 1100 1]1"Twith n + 3 elements
b = -ones(length(y), 1); % [-1 -1 -1 ... -1 -1] ~ T with n elements
A = -eye(length(y)); % Only ith slack param for the ith inequality

o°

Based on an observation from the altered original condition
for i = 1:length(y)

if y(i, 1) ==
X(1i, ) = -X(1i, :);
end
end
A = [AX];
Aeq = [1; % No equality condition
beq = [1]; % No equality condition

1b = [zeros(length(y), 1); -inf; -inf; -inf]; % Lower bound applies to slack params
ub = [inf(length(lb), 1)1; % No upper bound

theta opt = linprog(f, A, b, Aeq, beq, lb, ub);

theta opt = theta opt(end-2:end, 1); % The last 3 elements are the optimal params

end

5.2. Performance
Compared to the Test Error in both the GD (0.0242) and SGD (0.0251 + 0.0011) cases for logistic

regression, the SVM method yields very similar results.

Table 16: Training and Test Accuracy with SVM Linear Programming

Train Test
e 0.0200 0.0241




5.3. Decision Boundary Derivation
Given the form § = b + w2 + w®@ £ making z(?) the subject of formula generates the following

form: (2 = azV) + 8 where o = <—%> and g = L3

Table 17: Optimal Parameters and Resultant « and s for SVM, SGD and GD Logistic Regression
SVM(y=0) SGDLR(y=0.5) GDLR(y=0.5)

b -9.6567 -10.9964 -10.5063

wl) 1.9256 1.9981 1.9365

w? 5.4760 6.5872 6.2485
a -0.3516 -0.3033 -0.3099
i 1.7635 1.7453 1.7614

The « and g values are very similar in all 3 cases, and their graphs reflect the similarity too.

Decision Boundaries
5.5 T T T T

———swM
SGD LR
GDLR ||

Figure 3: 2D Plots of Decision Boundaries for SVM, SGD, and GD Logistic Regression
6. Task 6: Optimizing SVM via Gradient Descent and Hinge Loss

6.1. Hinge Loss Gradient Computation

for i = l:iters total
grad loss = zeros(n_ features, 1); % Initialise Hinge Loss Gradients
hinge losses = hinge loss per sample(X train, y train, theta curr);
for j = 1l:length(hinge losses)
if hinge_losses(j) > 0 % Satisfy the Gradient condition
grad loss = grad loss - y train(j) * X train(j, :)';
end
end
theta curr = theta curr - learning rate / length(y_train) * grad loss;

end



6.2. Configuring Hyperparameters

To find the optimal learning rate A\, we keep n_iters = 10000 and perform the experiment
for lambdas = [0.00001 0.0001 0.001 0.01 0.1 1], picking the one with lowest corresponding

Training Error and Validation Error —> lambda = 1.

Table 18: Training and Validation e for Different Learning Rates at 10000 iterations

A Training e Validation e
0.00001 0.5000 0.4450
0.0001 0.4250 0.4050

0.001 0.0438 0.0400
0.01 0.0200 0.0350
0.1 0.0175 0.0300

B 0.0163 0.0300
10 0.0163 0.0300

6.3. Average Loss

The optimal combination of n_iters = 10000 and lambda = 1 generates the following average loss
behaviour against number of iterations. We can see that the plot plateaus, suggesting convergence

of the average loss.

Average Loss against Number of Iterations
T T T T T T

Average Loss
o o o o o o 3
w B (< o ~ =] ©
T T T T

o
[N}

T

I
s

4

0 Il Il 1 Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of lterations

Figure 4: Average Loss for n_iters = 10000 and lambda = 1 against number of iterations

6.4. Performance

Compared with 5.2., the Test Error are very similar, implying similar performance of the learnt

optimal parameters in both techniques.

Table 19: Errors with SVM Hinge Loss GD Table 20: Errors for Different SVM methods
Train  Validation Test Hinge Loss GD Linear Programming
e 0.0163 0.0300 0.0238 e 0.0238 0.0241



6.5. Comparison of Optimal Parameters

When compared with the Linear Programming method, we do not get the same parameters,

explaining the slight real-world performance difference of the 2 sets of optimal parameters.

Table 21: Optimal Parameters learnt from Different methods

Hinge Loss GD Linear Programming

b -10.0675 -9.6567
w®) 2.0265 1.9256
w@ 5.7141 5.4760

6.6. Decision Boundary Derivation
Referring to the altered form: z(?) = az®) + 8 where a = (—%) and 8 = % since comparison is
only made between different SVM methods, y = 0, allowing for g = w% and yielding the following «

and S values.

Table 22: Resultant o and g for SVM, SGD and GD Logistic Regression

Hinge Loss GD Linear Programming
@ -0.3546 -0.3516
B 1.7619 1.7635

The « and § values are very similar for both cases, and their graphs reflect this too.

Decision Boundaries
T T T

55

T T T
Hinge Loss GD
Linear Programming

Figure 5: 2D Plots of Decision Boundaries for Hinge Loss GD and Linear Programming

10



	Task 1: Linear Regression via analytical solution to MSE
	Optimal Parameters
	Changing to Training Sample Size
	Experimentation with Training Sample Sizes and RNG Seeds

	Task 2: Linear Regression via Gradient Descent
	Optimal Learning Rate 1
	Test Set
	Optimal Learning Rate 2
	Relationship between niters and λ
	Comparison with Task 1

	Task 3: Logistic Regression using Gradient Descent
	Derivation of Log-Loss Gradient
	Optimal Learning Rate 1
	Optimal Learning Rate 2
	Test Set
	Performance

	Task 4: Logistic Regression with Stochastic Gradient Descent
	Configuring Hyperparameters
	Convergence
	Comparison with Task
	Test Set
	Runtime and Memory Usage Differences

	Task 5: Optimizing SVM via Linear Programming
	Linear Programming implementation
	Performance
	Decision Boundary Derivation

	Task 6: Optimizing SVM via Gradient Descent and Hinge Loss
	Hinge Loss Gradient Computation
	Configuring Hyperparameters
	Average Loss
	Performance
	Comparison of Optimal Parameters
	Decision Boundary Derivation


